Theney

ЕФИМЕНКО ТАТЬЯНА АЛЕКСАНДРОВНА

Бактериальные продуценты антибиотиков, активных в отношении микроорганизмов с лекарственной устойчивостью

Специальность 14.03.07 – химиотерапия и антибиотики

Автореферат диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Секторе поиска природных соединений, преодолевающих устойчивость бактерий, Отдела микробиологии Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт по изысканию новых антибиотиков имени Г.Ф. Гаузе» (ФГБНУ «НИИНА»).

Научный руководитель:

Терехова Лариса Петровна,

доктор биологических наук, профессор, заведующая Отделом микробиологии ФГБНУ «НИИНА»

Официальные оппоненты:

Бибикова Маргарита Васильевна,

доктор биологических наук, генеральный директор научно-технологической организации ООО «ВИОРИН»

Манучарова Наталия Александровна,

доктор биологических наук, профессор Кафедры биологии почв Факультета почвоведения ФГБОУ ВО Московского государственного университета имени М.В. Ломоносова

Ведущая организация:

Федеральное государственное бюджетное учреждение «Детский научно-клинический центр инфекционных болезней федерального медико-биологического агентства»

Защита состоится «18» декабря 2018 г. в 14 часов 00 минут на заседании диссертационного совета Д 001.005.01 при ФГБНУ «НИИНА» по адресу: 119021, Москва, ул. Б. Пироговская, д. 11, корп. 1.

С диссертацией можно ознакомиться в библиотеке ФГБНУ «НИИНА» и на сайте http://www.gause-inst.ru.

Автореферат разослан «__» 20__ г.

Приглашаем Вас принять участие в обсуждении диссертации на заседании Диссертационного совета. Отзывы на автореферат в 2-х экземплярах просим направлять по адресу: 119021, Москва, ул. Б. Пироговская, д. 11, корп. 1. Ученый совет

Ученый секретарь диссертационного совета, к.фарм.н.

Ally

В. И. Пономаренко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В настоящее время в медицине все острее встает проблема антибиотикорезистентности. Одним из путей решения этой проблемы является разработка новых антибиотиков, что особо подчеркивается в заключении ВОЗ от 25.02.2017¹. Настоящая работа посвящена решению *актуальной задачи* — изысканию в различных природных источниках бактерий — продуцентов антибиотиков, преодолевающих лекарственную устойчивость патогенных микроорганизмов, которые могли бы пополнить арсенал антимикробных лекарственных средств.

Цель и задачи исследования. *Цель исследования* заключалась в изыскании бактерий — продуцентов антибиотиков, активных в отношении микроорганизмов с лекарственной устойчивостью к антибиотикам медицинского назначения (антибиотикорезистентных микроорганизмов).

Для выполнения указанной цели данного исследования были поставлены следующие *задачи*:

- 1. Подобрать тест-систему, основанную на тест-штаммах различного систематического положения и обладающих разным уровнем антибиотикорезистентности, для отбора перспективных продуцентов антибиотиков, обладающих активностью в отношении микроорганизмов с лекарственной устойчивостью.
- 2. Выделить из различных природных источников бактериальные штаммы потенциальные продуценты антибиотиков.
- 3. Выявить продуценты антибиотиков и отобрать наиболее перспективные по антимикробному спектру и уровню биосинтеза.
- 4. Определить видовую принадлежность и филогенетическое положение штаммов продуцентов антибиотиков, преодолевающих антибиотикорезистентность тест-штаммов.
- 5. Создать коллекцию бактериальных продуцентов антибиотиков, преодолевающих лекарственную устойчивость.
- 6. Наработать для химического изучения антибиотически активные вещества, синтезируемые наиболее перспективными продуцентами.

Научная новизна. В результате скрининга 32 природных изолятов бактерий, выделенных из многолетнемерзлой почвы Антарктики, впервые обнаружена антимикробная активность в отношении антибиотикорезистентных тест-штаммов у представителей видов *Bacillus mojavensis*, *B. licheniformis* и *B. safensis*.

Проведен анализ антимикробной активности 93 штаммов бактерий – эндобионтов плодовых тел базидиальных грибов и впервые установлено, что среди бактериальных эндобионтов высок процент продуцентов антибиотиков (84,9%).

 $^{^1\} URL: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1$

Впервые описаны в качестве эндобионтов плодовых тел базидиальных грибов виды Achromobacter spanius, B. licheniformis, Hafnia paralvei, Micrococcus terreus, Nocardia coeliaca, Stenotrophomonas rhizophila.

Впервые установлено, что представители видов *Ach. spanius, Ewingella americana, H. paralvei, M. terreus, N. coeliaca, St. rhizophila* обладают способностью к образованию антимикробных веществ.

Установлено наличие двух новых пептидных антибиотиков у эндобионтных штаммов *B. subtilis* INA 01085 и INA 01086, выделенных из одного плодового тела гриба чешуйчатки обыкновенной (*Pholiota squarrosa* (OEDER) P.Kumm, 1871).

Получен и запатентован штамм B. pumilus INA 01110 — продуцент антибиотика амикумацина A. Впервые показано, что амикумацин A активен в отношении тест-штамма $Mycobacterium\ smegmatis\ mc^2$ 155, используемого на предварительном этапе скрининга противотуберкулезных средств.

Научно-практическая значимость исследования. Проведен анализ активности 329 антибиотической штаммов бактерий экологических систем, и выделены штаммы – продуценты антибиотиков, активных в отношении метициллинрезистентного золотистого стафилококка Leuconostoc mesenteroides VKPM B-4177 штамма устойчивого к антибиотикам группы ванкомицина, и штамма синегнойной (Pseudomonas aeruginosa **ATCC** 27853) множественной лекарственной устойчивостью.

Установлено, что плодовые тела базидиомицетов можно рассматривать в качестве перспективного источника бактериальных продуцентов антибиотиков, в том числе, преодолевающих антибиотикорезистентность патогенных бактерий.

Собрана коллекция штаммов продуцентов антибиотиков. антибиотикорезистентность, преодолевающих a штаммов также представителей видов, у которых ранее образование антибиотиков описано не было. На основании культурально-морфологических и генетических признаков 31 штамм идентифицирован, описан и заложен на длительное хранение в лиофилизированном виде в Коллекцию культур микроорганизмов ФГБНУ «НИИНА» и в Коллекцию продуцентов антибиотиков Сектора поиска природных соединений, преодолевающих устойчивость бактерий, ФГБНУ «НИИНА». Созданная коллекция является основой для дальнейшей работы по созданию новых антибиотиков медицинского назначения для борьбы с антибиотикорезистентными патогенными бактериями.

Выделены и описаны 2 штамма *В. subtilis* INA 01085 и INA 01086 – продуценты пептидных антибиотиков, активных в отношении грамположительных тест-бактерий, и полиеновых антибиотиков, обладающих активностью в отношении тест-штаммов грамположительных бактерий и грибов. Согласно анализу литературы, пептидные антибиотики с таким набором аминокислот описаны впервые.

Выделен и описан штамм *B. pumilus* INA 01087 – продуцент антибиотика амикумацина A, разработана технология получения амикумацина A путем биосинтеза, получен патент $P\Phi$ на селекционный штамм и способ получения амикумацина A.

Основные положения, выносимые на защиту

- 1. Подобрана тест-система для отбора продуцентов антибиотиков, в соответствии с которой изучена антибиотическая активность 329 штаммов бактерий, выделенных из различных источников. Установлено, что 103 штамма образуют антимикробные вещества.
- 2. Определена видовая принадлежность и филогенетическое положение 31 штамма продуцента антибиотиков.
- 3. Среди бактериальных штаммов, выделенных из многолетнемерзлой почвы Антарктики, выявлены продуценты антибиотиков, активных в отношении антибиотикорезистентных микроорганизмов. У представителей видов *В. mojavensis* и *В. licheniformis* описана антимикробная активность в отношении штамма *L. mesenteroides* VKPM B-4177 (VR), а у вида *В. safensis* в отношении антибиотикорезистентных патогенных бактерий.
- 4. Установлен высокий процент продуцентов антибиотиков (84,9%) среди бактериальных эндобионтов плодовых тел базидиальных грибов. Описаны культуры видов *Ach. spanius*, *B. licheniformis*, *H. paralvei*, *M. terreus*, *N. coeliaca*, *St. rhizophila*, которые ранее не были описаны в качестве эндобионтов. У представителей видов *Ach. spanius*, *Ew. americana*, *H. paralvei*, *M. terreus*, *N. coeliaca*, *St. rhizophila* установлено образование антимикробных веществ.
- 5. Создана коллекция из 31 штамма продуцента антибиотиков, преодолевающих антибиотикорезистентность тест-организмов и для трех штаммов из числа наиболее перспективных изучены антимикробные вещества.
- 6. Установлено, что эндобионтные штаммы *B. subtilis* INA 01085 и INA 01086, выделенные из одного плодового тела гриба чешуйчатки обыкновенной (*Pholiota squarrosa* (OEDER) P.KUMM, 1871), продуцируют два новых антибиотика пептидной природы и два полиеновых антибиотика.
- 7. Получен и запатентован штамм *B. pumilus* INA 01110 продуцент антибиотика амикумацина A. Показана антимикробная активность амикумацина A в отношении *Staphylococcus aureus* INA 00761 (MRSA), *L. mesenteroides* VKPM B-4177 (VRLM) и *Myc. smegmatis* mc² 155.

Личный вклад автора. Аналитический обзор научно-методической литературы, посвященной проблематике работы, экспериментальные научные исследования, изложенные в диссертации, и анализ полученных результатов представленной исследовательской работы выполнены автором самостоятельно под руководством д.б.н. профессора Тереховой Ларисы Петровны и к.б.н. Ефременковой Ольги Владимировны.

Степень достоверности и апробация результатов. Достоверность проведенных исследований подтверждается результатами статистической

обработки результатов всех экспериментальных данных, публикацией результатов в научных изданиях из списка ВАК, а также апробацией работы на международных и всероссийских конференциях.

Основные положения работы были представлены на конференции студентов и молодых ученых МГУИЭ (Москва, 2011), Международной научнопрактической конференции «Фармацевтические медицинские биотехнологии» (Москва, Международной Конференции 2012), «Биотехнология – наука XXI века» (Москва, 2012), Третьем Съезде Микологов России (Национальная Академия Микологии) (Москва, 2012), юбилейной конференции по медицинской микологии (к 100-летию З.Г. Степанищевой) (Москва, 2013), 5-ом Конгрессе Европейских Микробиологов («FEMS 2013») (Лейпциг, Германия, 2013), XIII съезде Общества микробиологов Украины им. С.М. Виноградского (Ялта, 2013), Второй Всероссийской молодежной научной школе-конференции «Микробные симбиозы в природных и экспериментальных экосистемах» (Оренбург, 2014), Четвертой международной конференции по науке и прикладным исследованиям «Постгеномные методы анализа в биологии и лабораторной и клинической медицине» (Казань, 2014), VIII "Биотехнология: международном Московском конгрессе состояние перспективы развития" (Москва, 2015), «ЭкоБиотех 2015» (Уфа, 2015), III международном микологическом форуме (Москва, 2015), Международной научной конференции студентов, аспирантов и молодых учёных «Ломоносов-2016» (Москва, 2016), Ежегодном Конгрессе с международным участием «Контроль и профилактика инфекций, связанных с оказанием медицинской помощи» (ИСМП-2016) (Москва, 2016), научно-практической конференции молодых ученых и специалистов «Актуальные вопросы эпидемиологии, диагностики, лечения и профилактики инфекционных и онкологических Четвертом заболеваний» (Москва, 2017), Съезде Микологов Микологии) Юбилейной (Национальная Академия (Москва, 2017), конференции по микологии и микробиологии (Москва, 2018).

Результаты научных изысканий диссертационной работы докладывались на заседаниях Ученого Совета, а также семинарах Отдела микробиологии $\Phi\Gamma БНУ$ «НИИНА» (2012 – 2017 гг.).

Публикации. По результатам исследования опубликовано 9 статей в отечественных и зарубежных журналах (6 статей в рецензируемых журналах, 5 из них в журналах, рекомендованных ВАК Минобрнауки РФ для публикации результатов диссертационных работ, 2 статьи в зарубежных журналах и 1 статья в электронном журнале) и 13 тезисов докладов.

Объем работы. Диссертация состоит из следующих разделов: введения, обзора литературы, описания методов исследования, результатов исследования и их обсуждения, заключения, выводов, списка сокращений и условных обозначений, списка цитируемой литературы и приложений. Материалы диссертации изложены на 140 страницах машинописного текста, содержат 18

таблиц и 18 рисунков. Список литературы включает 172 источника, в том числе 146 на иностранном языке.

Место проведения работы. Работа выполнена в Секторе поиска природных соединений, преодолевающих устойчивость бактерий, Отдела микробиологии ФГБНУ «НИИНА» и является частью исследования по теме 004: «Поиск новых антибиотиков, эффективных в отношении резистентных форм патогенных микроорганизмов» (номер госрегистрации 01201281987).

Автор выражает глубокую признательность за руководство и ценные консультации д.б.н., профессору Л.П. Тереховой, за постоянное внимание, ценные консультации и руководство к.б.н. О.В. Ефременковой, за обучение методам, ценные консультации и помощь в работе к.б.н. И.А. Маланичевой, за помощь в работе и поддержку коллегам В.Ф. Васильевой, И.Г. Сумаруковой, А.А. Глуховой, Ю.В. Бойковой, к.б.н. Н.Д. Малкиной, за сотрудничество в выделении и изучении химической природы антибиотиков д.х.н. В.А. Коршуну, к.х.н. В.А. Зенковой, д.х.н., профессору Г.С. Катрухе, к.х.н. Е.А. Рогожину, д.х.н. А.М. Королеву, а также д.х.н., профессору П.В. Сергиеву, к.х.н. И.А. Остерману (МГУ им. М.В. Ломоносова, НИИ ФХБ им. А.Н. Белозерского МГУ), за предоставление образцов для исследования д.б.н., профессору Г.И. Эль-Регистан (Институт микробиологии им. С.Н. Виноградского РАН).

Особую благодарность автор выражает д.б.н. В.С. Садыковой, д.б.н. Л.Г. Стояновой, д.б.н. О.А. Лапчинской и д.б.н. Э.Р. Переверзевой за постоянное внимание к работе, объективные замечания и ценные консультации, которые позволили улучшить работу.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ Введение

Во введении дано обоснование актуальности диссертационной работы, сформулированы цель и задачи исследования, научная новизна и научнопрактическая значимость полученных результатов. Охарактеризованы основные положения, выносимые на защиту, личный вклад автора, апробация и публикации представленной работы. Описана структура и объем диссертации.

Глава 1. Обзор литературы

Обзор представленной работы посвящен проблеме литературы антибиотикорезистентности патогенных микроорганизмов, механизмам формирования антибиотикорезистентности, основным таксономическим группам организмов – продуцентов антибиотиков и собственно бактериям, как источнику новых антимикробных природных соединений.

Глава 2. Материалы и методы

Объекты исследования. Поиск продуцентов антибиотиков проводили среди 329 штаммов бактерий, выделенных из различных природных источников: 204 штамма, выделенные из образца выщелоченного чернозема Краснодарского края, полученного из Коллекции почв ФГБНУ «НИИНА»; 93 штамма бактерий, выделенные из плодовых тел базидиальных грибов Москвы и Московской области; 32 штамма бактерий, выделенные из многолетнемерзлой

почвы Антарктики, были получены от профессора Г.И. Эль-Регистан из Института микробиологии им. С. Н. Виноградского РАН (Москва).

Выделение бактерий из почвы. Навеску почвы растирали в ступке, затем добавляли воду, полученную водную суспензию почвы тщательно перемешивали на шейкере, фильтровали через стерильный ватный фильтр, делали серию разведений и высевали на агаровую среду. Отдельные колонии отсевали в пробирки на скошенную агаровую среду №2 Гаузе и инкубировали несколько суток.

Выделение бактерий из плодовых тел базидиальных грибов. Плодовые тела грибов без признаков лизиса собирали в Москве и Московской области в летний период 2011-2014 годов. Не позднее чем через 2 часа после сбора грибов участок плодового тела гриба протирали спиртовым тампоном и надсекали раскаленным скальпелем. По месту надреза плодовое тело разламывали, кусочек ткани из толщи плодового тела переносили скальпелем или бактериологической петлей на поверхность агаровой среды №2 Гаузе в чашку Петри. Посевы инкубировали при комнатной температуре от 2 до 18 наличии бактерий осуществляли ИХ рассев, морфологических однородность на основании признаков И отсевали бактериальные изоляты в пробирки на скошенную агаровую среду для дальнейшей работы.

Тест-штаммы для определения антибиотической активности. Для определения антимикробной активности и МПК использовали следующие коллекционные тест-штаммы микроорганизмов: грамположительные бактерии В. subtilis ATCC 6633, В. mycoides 537, В. pumilus NCTC 8241, L. mesenteroides VKPM B-4177, М. luteus NCTC 8340, Myc. smegmatis VKPM Ac 1339, Myc. smegmatis mc² 155, S. aureus FDA 209P (MSSA), S. aureus INA 00761 (MRSA); грамотрицательные бактерии Escherichia coli ATCC 25922, Comamonas terrigena VKPM B-7571 (=ATCC 8461), P. aeruginosa ATCC 27853; грибы Aspergillus niger INA 00760, Saccharomyces cerevisiae INA 01129.

Определение антибиотической активности. Антибиотическую активность определяли методом диффузии в агар. После инкубирования в термостате определяли антибиотическую активность по наличию зон задержки роста тест-организмов.

Микроскопирование. Образцы микроскопировали с помощью светового микроскопа Olympus BX41TF (Япония).

Для видовой идентификации штаммов-продуцентов на основании анализа последовательности гена 16S рРНК использовали наборы реактивов PowerSoil DNA Kit (МО ВІО, США) и BioSilica (Россия) и следовали рекомендациям производителя.

Амплификацию гена 16S рРНК проводили с использованием наборов реактивов GenPak® Real-Time PCR Core (Изоген, Россия) и PCR Master Mix (ThermoScientific, США). ПЦР проводили в амплификаторе Thermal Cycler 2720 (Applied Biosystems, США). Анализ продуктов ПЦР проводили методом

электрофореза в 1% агарозном геле с использованием трис-боратного буфера при напряженности электрического поля 7,6 В/см.

Секвенирование фрагментов ДНК. Определение нуклеотидных последовательностей фрагментов осуществляли по методу Сэнгера на автоматическом секвенаторе Genetic Analyzer 3500 (Applied Biosystems, США).

Анализ генных последовательностей ДНК. Полученные нуклеотидные последовательности фрагментов гена 16S рРНК редактировали с помощью программы BioEdit v. 7.2.5 [Hall, 1999]. Для сборки полных нуклеотидных последовательностей использовали программу Mega 6 [Tamura, 2013]. Для выравнивания последовательностей и построения филогенетического дерева использовали нуклеотидные последовательности гена 16S рРНК типовых штаммов из баз данных GenBank² и Ribosomal Database Project (RDP)³.

Хранение бактериальных продуцентов антибиотиков. Штаммы бактериальных продуцентов антибиотиков поддерживали регулярными пересевами раз в 10-60 дней в зависимости от штамма. Для длительного хранения осуществляли лиофилизацию в стерильных ампулах.

Статистическая обработка результатов. Статистическая обработка результатов проводилась с определением стандартного отклонения [Платонов, 2000] с использованием программы Excel 2016.

Глава 3. Результаты и обсуждение

Подбор тест-системы для отбора штаммов – продуцентов антибиотиков. Для описания антибиотической активности были выбраны следующие тест-штаммы:

- 9 штаммов грамположительных и 3 штамма грамотрицательных бактерий для характеристики спектра антимикробной активности;
- два штамма *S. aureus*, отличающихся по признаку метициллинрезистентности INA 00761 (MRSA) и FDA 209P (MSSA);
- штамм *L. mesenteroides* VKPM B-4177 (VRLM) с высоким уровнем устойчивости к гликопептидным антибиотикам группы ванкомицина;
- штамм *P. aeruginosa* ATCC 27853 с множественной лекарственной устойчивостью;
- штаммы *A. niger* INA 00760 и *Sac. cerevisiae* RIA 259 для определения противогрибковой активности;
- штаммы *Myc. smegmatis* VKPM Ac 1339 и mc² 155 использовали для первичного скрининга противотуберкулезной активности.

Выделение бактерий из различных природных источников и изучение потенциальных продуцентов антибиотиков. В главе 3 приводятся результаты изучения бактерий, выделенных из почвы и мало исследованных в этом отношении природных источников.

Бактерии — продуценты антибиотиков, выделенные из почвы **Краснодарского края.** Из 204 штаммов антибиотическая активность была

-

² URL: www.ncbi.nlm.nih.gov ³ URL: http://www.cme.msu.edu

11. Из 4 ингибировали них только штамма грамотрицательных тест-бактерий, при этом активностью в отношении штамма P. aeruginosa ATCC 27853 на достаточно высоком уровне обладал штамм INA 01168. изученных штаммов ингибировали Большинство грамположительных тест-бактерий, среди них штаммы INA 01087, INA 01169 – INA 01172 проявили наиболее высокую активность в отношении штаммов MRSA и MSSA и обладали противогрибковой активностью. Наиболее перспективные по антимикробному спектру штаммы идентифицированы на основании анализа гена 16S pPHK (ID GenBank) – B. pumilus INA 01087 (KF17600), INA 01169 (MH319483), INA 01171 (MH319484); B. simplex INA 01168 (MH319480), INA 01186 (MH319481), Brevibacillus borstelensis INA 01188 (MH319482).

Бактерии — продуценты антибиотиков, выделенные из многолетнемерзлой почвы Антарктики. Из 32 штаммов 13 проявляют антибиотическую активность: 6 штаммов в отношении VRLM, 3 штамма в отношении MRSA, 3 в отношении грибов. Наиболее перспективные по антимикробному спектру штаммы идентифицированы на основании анализа гена 16S pPHK (ID GenBank) — B. licheniformis INA 01155 (MF186229); B. mojavensis INA 01149 (MF186223), INA 01151 (MF186225); B. safensis INA 01153 (MF186227), INA 01154 (MF186228); B. subtilis INA 01150 (MF186224); B. Gordonia terrae INA 01165 (MF278747).

Бактерии — **продуценты антибиотиков, выделенные из плодовых тел базидиальных грибов.** Всего из 86 плодовых тел грибов было выделено 93 штамма бактерий-эндобионтов. Обнаружено, что 79 штаммов обладают антимикробной активностью, противогрибковой активностью — 17.

Для дальнейшего изучения было отобрано 18 штаммов бактерий с различными антибиотическими спектрами, выделенных из 14 плодовых тел базидиальных грибов. Наиболее видов перспективные антимикробному спектру штаммы бактерий идентифицированы на основании анализа гена 16S pPHK (ID GenBank): B. licheniformis INA 01140 (KX129831); B. subtilis INA 01085 (KF311228), INA 01132 (KX098334), INA 01086 (KF311227); M. terreus INA 01130 (KX129822); N. coeliaca INA 01131 (KX129823), INA 01135 (KX129826); P. reinekei INA 01139 (KX129830); P. koreensis INA 01166 (MG597142); St. maltophilia INA 01133 (KX129824), INA 01134 (KX129825); St. rhizophila INA 01137 (KX129828); Ew. americana INA 01136 (KX129827), INA 01142 (KX129833), INA 01143 (KX129834), INA 01167 (MG597143); H. paralvei INA 01141 (KX129832); Ach. spanius INA 01138 (KX129829).

Штаммы INA 01136 и INA 01137 выделены из одного плодового тела *Coprinellus micaceus*. Штамм INA 01136 на высоком уровне ингибирует рост тест-штамма MRSA, а штамм INA 01137 помимо грамположительных тест-бактерий подавляет рост *E. coli* ATCC 25922. Штаммы INA 01131 и INA 01135 также выделены из одного плодового тела *Pycnoporus cinnabarinus*: INA 01131 подавляет рост MRSA, а INA 01135 – *M. luteus* NCTC 8340. Штаммы *B. subtilis*

INA 01085 и INA 01086 выделены из одного плодового тела *Pholiota squarrosa*⁴. В последующих исследованиях установлено, что они образуют различные, но близкие по строению, антибиотики, обладающие одинаковым антимикробным спектром действия.

Общий анализ бактерий - продуцентов антибиотиков, выделенных из разных источников. В таблице 1 на основании полученных результатов представлены суммарные данные по бактериям — продуцентам антибиотиков, выделенным из различных источников.

Таблица 1 Общий анализ бактерий - продуцентов антибиотиков, выделенных из разных источников

	Общее количество выделенных бактерий				Количество бактерий,					
Источник бактерий					обладающих активностью в					
			Количест-	отношении						
			во антибио- тически активных бактерий		антибиотикорезистентных микроорганизмов					
					Staphylococcus aureus INA 00761		Leuconostoc mesenteroides VKPM B-4177		Pseudomonas aeruginosa ATCC 27853	
	n	%	n	%	n	%	n	%	n	%
Почва Краснодарского края	204	100	11	5,4	10	4,9	7	3,4	1	0,5
Многолетнемерзлая почва Антарктики	32	100	13	40,6	3	9,4	6	18,8	1	3,1
Плодовые тела базидиальных грибов	93	100	79	84,9	31	33,3	5	5,4	20	21,5

По данным таблицы лишь малая часть бактериальных штаммов, выделенных из почвы Краснодарского края, обладает антимикробной активностью (5,4%), но среди них есть штаммы, активные в отношении антибиотикорезистентных микроорганизмов; из 32 бактерий, выделенных из многолетнемерзлой почвы Антарктики, 40,6% антибиотически активны, из них нами впервые описана антимикробная активность у двух штаммов *В. mojavensis* INA 01149 и INA 01151 в отношении штамма VRLM.

Штамм *B. safensis* INA 01153 активен в отношении грамположительных бактерий, включая штамм VRLM. Другой штамм этого вида 01154, предположительно, синтезирует несколько веществ исходя из динамики проявления антибиотической активности против MRSA, VRLM, *P. aeruginosa*

 $^{^4}$ Штамм *Pholiota squarrosa* 3203 взят в культуру О.В. Ефременковой и И.Г. Сумаруковой. Штаммы INA 01085 и INA 01086 как устойчивые контаминанты штамма 3203 выделены в культуру И.А. Маланичевой.

АТСС 27853 и *Sac. cerevisiae* RIA 259. В литературе ранее не было описано штаммов *B. safensis*, преодолевающих антибиотикорезистентность. Штамм *B. licheniformis* INA 01155 проявляет широкий спектр антимикробной активности, при этом активность в отношении VRLM, по нашим данным, описана впервые.

Таким образом, в микробиоте многолетнемерзлой почвы Антарктики присутствуют штаммы, обладающие антибиотическими свойствами, в том числе активные в отношении антибиотикорезистентных тест-штаммов, что делает целесообразным их химическое исследование.

Из плодовых тел базидиальных грибов было выделено 93 штамма бактериальных эндобионтов, среди которых 84,9% являются продуцентами антибиотиков. Такой высокий процент, предположительно, можно объяснить конкуренцией бактериальных видов при колонизации плодового тела гриба.

Из 18 бактериальных эндобионтов грамположительные есть И грамотрицательные бактерии, в общей сложности они представляют 7 семейств и 8 родов. Выявлены виды бактерий, ранее не выделявшиеся из подобного источника: Ach. spanius (гриб Mycena flavoalba,) B. licheniformis (Phallus impudicus), H. paralvei (Fistulina hepatica), M. terreus (Lactarius rufus), N. coeliaca (Pycnoporus cinnabarinus) и St. rhizophila (Coprinellus micaceus). Известно, что представители родов Pseudomonas и Bacillus являются продуцентами большого числа антибиотиков различной химической природы [Смирнов, Киприанова, 1990; Raaijmakers et al., 2010; Fickers, 2012], что, исключает возможности описания новых антимикробных соединений. Антимикробная активность у Ach. spanius, Ew. americana, H. paralvei, M. terreus, N. coeliaca и St. rhizophila описана впервые. Таким образом, плодовые тела базидиальных грибов можно рассматривать в качестве перспективного бактерий нетрадиционного источника продуцентов антибиотиков.

Изучение наиболее перспективных штаммов – продуцентов антибиотиков. Для химического изучения были отобраны продуценты антибиотиков, активных в отношении как тест-штамма MRSA, так и VRLM.

Штаммы Bacillus subtilis INA 01085 и INA 01086 – продуценты полиеновых и пептидных антибиотиков. Установлено, что культуральная жидкость обоих штаммов содержит антимикробные вещества, активные в отношении всех грамположительных тест-бактерий и в отношении E. coli АТСС 25922. У штаммов было обнаружено по два антибиотика разной химической природы: штамм INA 01085 образует гексаен, а штамм INA 01086 – пентаен. Очищенные сырцы обоих антибиотиков проявляют активность в отношении тест-штаммов B. subtilis ATCC 6633, MRSA и в отношении грибов, но неактивны в отношении штамма E. coli ATCC 25922. Кроме того, было антибиотика два пептидной природы, отличающиеся выделено аминокислотному составу, активные только отношении тест-бактерий. грамположительных Описанные антибиотики ПО

аминокислотному составу отличаются от описанных в литературе пептидных антибиотиков и, соответственно, относятся к ранее неизвестным природным соединениям. Важным свойством этих соединений является их активность в отношении антибиотикорезистентных бактерий.

Штамм *Bacillus pumilus* **INA 01087** – продуцент антибиотиков группы амикумацина. Из почвы Краснодарского края для дальнейшего исследования отобран штамм *B. pumilus* INA 01087, чья культуральная жидкость содержит антимикробные вещества, активные в отношении грамположительных тестбактерий, *E. coli* ATCC 25922 и грибов. Анализ продуктов биосинтеза штамма INA 01087 показал наличие трех антибиотических веществ, из которых преобладало вещество, идентифицированное с амикумацином A⁵. Для повышения продуктивности была проведена ступенчатая селекция без применения мутагенных факторов. Отобранный наиболее продуктивный вариант данного штамма превышает уровень биосинтеза исходного штамма INA 01087 на 162%. Прошедший селекцию вариант депонирован в Коллекцию ФГБНУ «НИИНА» под номером INA 01110 и в Коллекцию ВКПМ под номером VKPM B-12548.

Показано, что амикумацин А активен в отношении MRSA и VRLM при МПК 0,5 мкг/диск. Впервые показано антибиотическое действие на тест-штамм Мус. smegmatis mc² 155. В 2016 году сотрудниками ФГБНУ «НИИНА» и ФГБУ «НМИЦ ТИО им. ак. В.И. Шумакова» Минздрава России установлена активность амикумацина А в отношении патогенных грибов Candida krusei 247 и Cryptococcus neoformans 245 с множественной лекарственной устойчивостью [Ефременкова с соавт., 2017]. По данным П.В. Сергиева с сотрудниками при нашем участии было показано, что амикумацин А имеет ранее неописанный сайт связывания с рибосомой, что объясняет его активность в отношении устойчивых вариантов тест-микроорганизмов [Polikanov et al., 2014]. На основании полученных результатов амикумацин А рассматривается в качестве перспективного соединения для разработки на его основе эффективного антибиотика медицинского назначения, поэтому работа с ним в ФГБНУ «НИИНА» продолжается.

ЗАКЛЮЧЕНИЕ

Одним из способов решения проблемы антибиотикорезистентности является изыскание новых эффективных природных антибиотиков. Данное исследование посвящено поиску продуцентов новых антибиотиков, активных в отношении микроорганизмов с лекарственной устойчивостью, среди бактерий, выделенных из образцов выщелоченного чернозема Краснодарского края, многолетнемерзлой почвы Антарктики и плодовых тел базидиальных грибов

⁵ Выделение и установление структуры антибиотиков проводилось сотрудниками Лаборатории химического изучения биологически активных соединений микробного происхождения (зав. лаб., д.х.н. В.А. Коршун, с.н.с., к.х.н. В.А. Зенкова, н.с., к.х.н. Е.А. Рогожин) и Лаборатории химической трансформации антибиотиков ФГБНУ «НИИНА» (г.н.с., д.х.н. А.М. Королев).

Москвы и Московской области. Всего было выделено 329 штаммов бактерий, из которых антибиотическая активность была выявлена у 103. Наибольшей способностью к образованию антибиотических веществ обладают штаммы, выделенные из плодовых тел базидиальных грибов (84,9%). Процент бактерий – продуцентов антибиотиков, выделенных ИЗ многолетнемерзлой Антарктики, был достаточно составил также высок И Краснодарского края оказалась наименее перспективным источником бактерий, образующих антибиотики (5,4%). Тем не менее, анализ результатов изучения антимикробной активности показал, что каждый источник содержит бактерии, обладающие активностью в отношении антибиотикорезистентных тестштаммов. Выявленные перспективные штаммы – продуценты антибиотиков являются основой для дальнейшей работы по созданию новых эффективных антибиотиков медицинского назначения.

выводы

- 1. Подобрана тест-система для отбора продуцентов антибиотиков, основанная на использовании коллекционных штаммов патогенных микроорганизмов (грамположительных и грамотрицательных бактерий, грибов) с различным уровнем антибиотикорезистентности.
- 2. Изучена антибиотическая активность 329 штаммов бактерий, выделенных из почвы Краснодарского края (204 штамма), плодовых тел базидиальных грибов Москвы и Московской области (93 штамма) и многолетнемерзлой почвы Антарктики (32 штамма). Из всех трех экосистем выделены бактериальные продуценты антибиотиков, обладающих активностью в отношении как грамположительных, так и грамотрицательных антибиотикорезистентных штаммов.
- 3. Среди изученных экосистем наиболее перспективным источником продуцентов антибиотиков являются плодовые тела базидиальных грибов процент антибиотически активных штаммов составляет 84,9.
- 4. Впервые установлено, что представители видов *B. mojavensis*, *B. licheniformis* и *B. safensis*, выделенных из многолетнемерзлой почвы Антарктики, продуцируют антибиотики, активные в отношении антибиотикорезистентных штаммов.
- 5. Впервые из плодовых тел грибов выделены бактериальные эндобионты видов Ach. spanius, B. licheniformis, H. paralvei, M. terreus, N. coeliaca, St. rhizophila.
- 6. Впервые установлено наличие антибиотической активности у представителей видов Ach. spanius, Ew. americana, H. paralvei, M. terreus, N. coeliaca и St. rhizophila.
- 7. Впервые установлено, что эндобионтные штаммы *B. subtilis* (INA 01085 и INA 01086), выделенные из одного плодового тела *Pholiota squarrosa*, продуцируют новые антибиотики пептидной природы, активные в отношении всех применявшихся грамположительных тест-бактерий, и полиеновые антибиотики, активные в отношении грамположительных бактерий и грибов.

- 8. Получен и запатентован штамм *B. pumilus* INA 01110 продуцент антибиотика амикумацина A, продуктивность которого на 162% превышает уровень биосинтеза исходного штамма. Показана активность амикумацина A в отношении тест-штаммов MRSA, VR и *Myc. smegmatis* mc² 155.
- 9. Выделен и охарактеризован 31 новый штамм продуцент антибиотиков, преодолевающих антибиотикорезистентность микроорганизмов. Все штаммы депонированы в Коллекцию культур микроорганизмов ФГБНУ «НИИНА».

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи и патент:

- 1. Маланичева И.А., Козлов Д.Г., **Ефименко Т.А.**, Зенкова В.А., Катруха Г.С., Резникова М.И., Королёв А.М., Борщевская Л.Н., Тарасова О.Д., Синеокий С.П., Ефременкова О.В. Новые антибиотики, образуемые штаммами *Bacillus subtilis* // Микробиология. -2014.-T.83, №4. -C.445-450.
- 2. **Ефименко Т.А.** Маланичева И.А., Зенкова В.А., Резникова М.И., Королев А.М., Ефременкова О.В. Изыскание новых антибиотиков среди бактерий, выделенных из плодовых тел базидиальных грибов // Бюллетень Оренбургского научного центра Уро РАН (электронный журнал). 2014. №3. С. 1-11. URL: http://www.elmag.uran.ru.
- 3. **Ефименко Т.А.**, Маланичева И.А., Зенкова В.А., Королев А.М., Остерман И.А., Сергиев П.В., Ефременкова О.В. Изыскание антибиотиков, эффективных в отношении бактерий с лекарственной устойчивостью, на примере *Bacillus pumilus* продуцента антибиотика амикумацина А // Вестник Оренбургского университета. 2014. N013. С. 27-31.
- 4. Polikanov Y.S., Osterman I.A., Szal T., Tashlitsky V.N., Serebryakova M.V., Kusochek P., Bulkley D., Malanicheva I.A., **Efimenko T.A.**, Efremenkova O.V., Konevega A.L., Shaw K.J., Bogdanov A.A., Rodnina M.V., Dontsova O.A., Mankin A.S., Steitz T.A., Sergiev P.V. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome // Mol. Cell. − 2014. − №56. − P. 531-540.
- 5. Маланичева И.А., **Ефименко Т.А.**, Зенкова В.А, Королев А.М., Остерман И.А., Сергиев П.В., Ефременкова О.В. Бактерии рода *Bacillus* − продуценты антибиотиков, преодолевающих лекарственную устойчивость болезнетворных микроорганизмов // Известия УНЦ РАН. − 2015. − №4(1). − С. 98-100.
- 6. **Ефименко Т.А.**, Маланичева И.А, Васильева Б.Ф., Глухова А.А., Сумарукова И.Г., Бойкова Ю.В., Малкина Н.Д., Терехова Л.П., Ефременкова О.В. Антибиотическая активность бактерий эндобионтов плодовых тел базидиальных грибов // Микробиология. 2016. Т. 85, №6. С. 740-747.
- 7. **Ефименко Т.А.**, Маланичева И.А., Зенкова В.А., Ефременкова О.В., Габриэлян Н.И. Антагонизм бацилл к антибиотикоустойчивым патогенам // Дезинфекционное дело. -2016. №4 (98). C. 73-74.

- 8. Ефременкова О.В., Габриэлян Н.И., Маланичева И.А., **Ефименко Т.А.**, Сумарукова И.Г., Глухова А.А., Бойкова Ю.В., Рогожин Е.А., Королев А.М., Коршун В.А., Драбкина И.В. Антимикробные свойства амикумацина А // Антибиотики и химиотерапия. 2017. Т. 62, \mathbb{N} 1-2. С. 16-19.
- 9. Tyurin A.P., **Efimenko T.A.**, Prokhorenko I.A., Rogozhin E.A., Malanicheva I.A., Zenkova V.A., Efremenkova O.V., Korshun V.A. Amicoumacins and Related Compounds: Chemistry and Biology. Studies in Natural Products Chemistry. 2017. V. 55. P. 385-441.
- 10. Ефременкова О.В., Маланичева И.А., Зенкова В.А., Малютина Н.М., Васильева Б.Ф., Сумарукова И.Г., Резникова М.И., Байшев И.Т., **Ефименко Т.А.**, Рогожин Е.А., Салимова Е.И., Королев А.М., Остерман И.А., Сергиев П.В. Штамм *Bacillus pumilus* и способ получения антибиотика амикумацина А с его применением. Патент РФ 2627187 от 03.08.2017. Заявитель и патентообладатель ФГБНУ «НИИНА».

Тезисы докладов и сообщений:

- 1. Маланичева И.А., Козлов Д.Г., **Ефименко Т.А.**, Зенкова В.А., Катруха Г.С., Резникова М.И., Борщевская Л.Н., Тарасова О.Д., Синеокий С.П., Ефременкова О.В. Плодовые тела высших грибов как экологическая ниша микроорганизмов продуцентов антибиотиков // Материалы международной научно-практической конференции «Фармацевтические и медицинские биотехнологии». 2012. С. 42-43.
- 2. Козлов Д.Г., Маланичева И.А., **Ефименко Т.А.**, Зенкова В.А., Катруха Г.С., Резникова М.И., Борщевская Л.Н., Тарасова О.Д., Синеокий С.П., Ефременкова О.В. Новые антибиотики, образуемые штаммами *Bacillus subtilis* // Сборник трудов Международной Конференции «Биотехнология наука XXI века». 2012. С. 372-373.
- 3. Маланичева И.А., Козлов Д.Г., **Ефименко Т.А.**, Зенкова В.А., Катруха Г.С., Резникова М.И., Борщевская Л.Н., Тарасова О.Д., Синеокий С.П., Ефременкова О.В. Плодовые тела высших грибов как экологическая ниша для микроорганизмов продуцентов антибиотиков // Третий Съезд Микологов России (Национальная Академия Микологии). 2012. С. 414.
- 4. Malanicheva I.A., **Efimenko T.A.**, Zenkova V.A., Katrukha G.S., Resnikova M.I., Korolev A.M., Borshchevskaya LN., Tarasova O.D., Sineokiy S.P., Efremenkova O.V. New antibiotics produced by strains of *Bacillus subtilis* effective against MRSA and vancomycin-resistant *Leuconostoc mesenteroides* // Материалы 5-ого Конгресса Европейских Микробиологов («FEMS 2013»). 2013.
- 5. **Ефименко Т.А.**, Маланичева И.А., Зенкова В.А., Катруха Г.С., Резникова М.И., Королёв А.М., Борщевская Л.Н., Тарасова О.Д., Синеокий С.П., Ефременкова О.В. Новые антибиотики, образуемые штаммами *Bacillus subtilis*, устойчивых к антибиотикам медицинского назначения // Материалы XIII Съезда Общества микробиологов Украины. 2013. С. 91.
- 6. Маланичева И.А., **Ефименко Т.А.**, Зенкова В.А., Катруха Г.С., Резникова М.И., Королёв А.М., Остерман И.А., Сергиев П.В., Ефременкова

- О.В. Штамм *Bacillus pumilus* продуцент антибиотика амикумацина A, эффективного в отношении бактерий с лекарственной устойчивостью // Материалы XIII Съезда Общества микробиологов Украины. 2013. С. 111.
- 7. **Ефименко Т.А.** Изыскание продуцентов антибиотиков эндобионтов плодовых тел базидиомицетов, эффективных в отношении тестштамма *Aspergillus niger* // Успехи медицинской микологии. 2014. Т. 12. С. 384-386.
- 8. Osterman I.A., Polikanov Y.S, Efremenkova O.V., **Efimenko T.A.**, Malanicheva I.A., Serebryakova M.V., Konevega A.L., Bulkley D., Kusochek P., Tashlitsky V.N., Szal T., Rodnina M.V., Bogdanov A.A., Dontsova O.A., Mankin A.S., Steitz T.A., Sergiev P.V. Amicoumacin: a new antibiotic targeting ribosome // In Proceedings of the 4th International conference on science and applied research. Post-Genome Methods of Analysis in Biology and Laboratory and Clinical Medicine. 2014. P. S02-05.
- 9. **Ефименко Т.А.** Изучение антибиотических свойств бактерий ассоциантов плодовых тел базидиальных грибов // Материалы VIII Московского международного конгресса «Биотехнология: состояние и перспективы развития». 2015. 4.1. C.279-280.
- 10. **Ефименко Т.А.**, Маланичева И.А., Васильева Б.Ф., Ефременкова О.В. Антибиотическая активность бактерий эндобионтов плодовых тел базидиальных грибов // Материалы III международного микологического форума. 2015. Т. 5. С. 294-295.
- 11. Ефименко Т.А. Изучение антибиотических свойств бактерий, тел базидиальных грибов выделенных плодовых // Международного научного форума «ЛОМОНОСОВ-2016» молодежного https://lomonosov-[Электронный 2016. **URL**: pecypc] msu.ru/archive/Lomonosov 2016/data/section 2 8318.htm
- 12. **Ефименко Т.А.** Изучение антибиотических свойств бактерийэндобионтов плодовых тел базидиальных грибов // Тезисы докладов научнопрактической конференции молодых ученых «Актуальные вопросы эпидемиологии, диагностики, лечения и профилактики инфекционных и онкологических заболеваний». – 2017. – С. 12.
- Ефименко Т.А., Маланичева И.А., Васильева Б.Ф., Сумарукова 13. Л.П., Глухова A.A., Терехова Ефременкова O.B. И.Г., свойств антибактериальных бактерий эндобионтов плодовых базидиальных грибов // Материалы 4-го Съезда микологов России. – 2017. – Т. 7. –C. 401.
- 14. **Ефименко Т.А.,** Васильева Б.Ф., Глухова А.А., Маланичева И.А., Сумарукова И.Г., Ефременкова О.В. Антимикробная активность эндобионтов плодовых тел базидиальных грибов // Успехи медицинской микологии. 2018. Т. XVIII. С. 120-125.